
CALIBRATION OF PHOTOVOLTAIC MODULE PERFORMANCE MODELS 

USING MONITORED SYSTEM DATA 

 

 

Clifford W. Hansen1a, Katherine A. Klise1b, Joshua S. Stein1c, Yuzuru Ueda2, Keiichiro Hakuta3 
1a Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185, USA, cwhanse@sandia.gov, 505-284-1643 

1b kaklise@sandia.gov, 1c jsstein@sandia.gov,  
2 Tokyo Institute of Technology, Tokyo, Japan, ueda.y.ae@m.titech.ac.jp 

3 NTT Facilities Inc, Tokyo, Japan, hakuta22@ntt-f.co.jp 

 

 

ABSTRACT: Calibration of a photovoltaic module performance model currently relies on measurements of electrical 

output taken with the module outdoors on a two-axis tracker, or indoors using a solar simulator. These measurements 

require expensive infrastructure. By contrast, measuring electrical performance for systems outdoors on fixed racking 

is substantially cheaper, yet no method currently exists to translate these meaurements to model coefficients. We 

present and validate methods to calibrate the Sandia Photovoltaic Array Performance Model and the California 

Energy Commission model using data collected outdoors for modules at fixed tilt orientation. A method to 

successfully calibrate module performance models without recourse to a two-axis tracker or a solar simulator expands 

the ability to rapidly characterize photovoltaic modules in actual operating conditions. 
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1 INTRODUCTION 

 

Performance models for photovoltaic (PV) systems 

predict system output over ranges of irradiance and 

temperature. Two popular performance models are the 

Sandia Photovoltaic Array Performance Model (SAPM) 

[1], which comprises a set of empirical expressions for 

short-circuit current, open circuit voltage, and the 

maximum power point, and the California Energy 

Commission (CEC) model [2], which models a module as 

a single diode equivalent circuit. The popular software 

package PVsyst [3] also represents a PV module as a 

single diode equivalent circuit albeit with some 

differences in its mathematical model. 

Each model requires a set of coefficients which are 

specific to the module being considered. In addition, both 

models include terms which adjust the incident irradiance 

to account for reflection losses at the module surface 

when the module is not normal to the sun, and for 

variation in the spectral content of incident irradiance, as 

well as other loss factors such as soiling. 

Accurate module performance models are essential to 

the economic and technical success of a PV power 

system. Calibration of these models is usually achieved 

by measuring module performance (i.e., IV curves) 

outdoors on a two-axis tracker [4] or indoors using a 

solar simulator [5]. Methods are available to determine 

the required model coefficients from such data [4, 6, 7]. 

By contrast, no validated methods are available to 

determine performance model coefficients using data 

from a monitored system, i.e., from I-V curves measured 

periodically with concurrent irradiance and temperature 

measurements for a module outdoors at fixed tilt 

orientation. In this paper, we present and validate 

techniques to calibrate the SAPM and CEC model using 

data from a monitored system. These techniques open the 

possibility to dramatically reduce the cost of the 

equipment required to accurately calibrate performance 

models, and also may provide a method to calibrate a 

performance model descriptive of an already-built PV 

system. 

 

 

 

2. PERFORMANCE MODELS 

 

Two performance models are used in this study: the 

SAPM and the CEC model. In the model descriptions 

that follow, current is in Amps, voltage is in Volts, power 

is in Watts, irradiance is in Watts/m2, temperature is in 

degrees Celsius, and resistance is in Ohms. Temperature 

coefficients are in Amps/C or Volts/C unless otherwise 

noted. 

 

2.1 The Sandia Array Performance Model 

The SAPM comprises the following equations: 
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Short-circuit current (ISC), current at the maximum 

power point (IMP), open circuit voltage (VOC), voltage at 

the maximum power point (VMP), and the maximum 

power point (PMP) have the usual meanings as do 

temperature coefficients (ISC, IMP, VOC, and VMP). For 

the SAPM, ISC and IMP are in units of 1/C. The 

subscript ‘0’ indicates a value at standard test conditions 

(STC) irradiance (E0 = 1000 W/m2), reference cell 

temperature (T0 = 25°C), and reference solar spectrum.  

Ee is the effective irradiance that can be converted to 

electricity, Eb is the beam component of incident 

irradiance, and Ediff is the diffuse component of incident 

irradiance. The variables AMa and AOI are apparent air 

mass and angle of incidence, respectively. The term f1 is 

normally a polynomial in AMa that accounts for the 

influence of solar spectrum on ISC, the term f2 quantifies 

the fraction of beam irradiance that is not reflected from 

the module’s face, and fd is the fraction of diffuse 

irradiance used by module. The coefficients C0, C1, C2, 

and C3 relate IMP and VMP to effective irradiance. NS is 

the number of cells in series, n is the diode (ideality) 

factor, and TC is the cell temperature averaged over the 
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module’s cells. The term (TC) is the cell thermal voltage 

defined as (k×TC)/q where k is Boltzmann’s constant, 

1.38 × 10-23 J/K and q is the elementary charge, 1.62 × 

10-19 C. 

 

2.2 The California Energy Commission Model 

The CEC model comprises the following equations: 
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In the CEC model, I and V are the current and voltage 

along an IV curve, and TC is the cell temperature. IL is the 

light current, IO is the diode reverse saturation current, Eg 

is the band gap, RSH is shunt resistance, and RS is series 

resistance. The values of these quantities at STC are IL0, 

IO0, Eg0, RSH0 and RS0. E is the incident irradiance 

reaching the PV cell (i.e., plane of array irradiance 

reduced by reflection losses). M/M0 is termed the airmass 

modifier and accounts for the effect of solar spectrum on 

ISC and is equivalent to f1(AMa) in SAPM [2]. NS, n, 

(TC), E0, and T0 have the same definitions as noted for 

the SAPM. The temperature coefficient ISC is in units of 

A/C. 

 

 

3 MONITORED SYSTEM DATA 

 

Data collected from five PV modules were used to 

calibrate performance models using fixed-tilt data. The 

modules are located at Los Alamos, New Mexico, USA 

and represent a range of technologies (Table I). IV 

curves, POA irradiance, global horizontal irradiance 

(GHI), direct normal irradiance (DNI), and module back-

surface temperature (TM) were measured every 5 minutes 

between January and September 2013 by NEDO. Data 

sets for each module contain over 44,000 individual IV 

curves. 

 

Table I: Photovoltaic modules considered 

 

 Cells 
Nameplate 

PMP (W) 

Sharp mono-Si 60 240 

Sunpower mono-Si 72 240 

Kyocera poly-Si 60 235 

Kaneka tandem a-Si 106 110 

Solar Frontier CIS 109 85 

 

 Although GHI and DNI measurements are available, 

we chose to use only POA irradiance measurements for 

model calibration in order that our methods could be 

broadly applicable. ISC, IMP, VOC, VMP, and PMP are 

extracted from each IV curve. AMa and AOI are 

computed using the module’s orientation and solar 

ephemerides. 

Before using the data to calibrate the performance 

models, several filters are applied to eliminate erroneous 

or inconsistent data. These filters include (1) removing 

data with physically unreasonable values, (2) removing 

data with high AMa or AOI because measurements at 

these conditions are generally less reliable, and (3) 

removing data when the POA irradiance and ISC are not 

linearly correlated (Fig. 1). When data meets any of these 

criteria, all measurements at that time are eliminated from 

the calibration procedure. After filtering, the data is 

divided into in-sample and out-of-sample subsets of 

roughly equal size using a random selection of the 

dataset. The in-sample data set is used to calibrate the 

model. The out-of-sample data set is used for model 

validation. 

 

 
Figure 1: Filtering for mismatched IV curves and 

irradiance measurements for the Sharp mono-Si module. 

 

 

4 CALIBRATION METHODS 

 

Temperature coefficients (i.e., ISC, IMP, VOC, and 

VMP) cannot be determined from monitored system data, 

because measurement of these coefficients requires 

measuring module electrical output with relatively 

constant irradiance while module temperature changes. 

Typically, these coefficients are determined either 

indoors using a temperature controlled flash tester, or are 

measured outdoors by shading the module until its 

temperature equilibrates with ambient air temperature, 

then exposing the module and measuring electrical output 

while the module warms. Equivalent conditions do not 

exist when a system is being monitored outdoors. For this 

study, it is assumed that temperature coefficients given in 

data sheets are sufficiently accurate.  

Cell temperature, TC, is not measured directly on the 

monitored systems. Rather, module back-surface 

temperature, TM, is measured by thermocouples. Cell 

temperature is estimated as 

0
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E
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where POA in Eq. 11 is the measured POA irradiance. 

The constant 3°C in Eq. 11 is representative of the 

difference between back-surface and cell temperatures in 

flat-plate crystalline silicon modules [1]. 

When calibrating the SAPM and the CEC models 

using fixed tilt data, the primary challenge is establishing 

a relationship between POA irradiance and ISC for the 

SAPM and between POA irradiance and the light current 

IL for the CEC model. For the SAPM, POA irradiance 

must be separated into its beam and diffuse components 

(Eb and Ediff, respectively), and the influence of solar 

spectrum and reflection losses must be estimated, as 

indicated in Eq. 1. For the CEC model, POA irradiance is 

used directly to estimate the incident irradiance reaching 

the PV cell, E in Eq. 7. This assumption is reasonable 

except at very high AOI.  



The SAPM and CEC model use the same methods to 

estimate the airmass modifier (f1(AMa) in Eq. 1 and 

M/M0 in Eq. 7). Eq. 1 is used to estimate f1(AMa) using 

measurements made during clear-sky conditions. The 

clear sky conditions are necessary to estimate Eb and Ediff 

in Eq. 1. To identify clear sky conditions using only POA 

irradiance measurements, the Haurwitz clear sky model 

[8] was used to estimate clear sky GHI, the DIRINT 

modification of the DISC model [9] was used to estimate 

clear sky DNI, the Sandia’s Simple Sky Diffuse Model 

[10] was used to estimate diffuse irradiance, and the 

ground diffuse model in [11] was used to estimate ground 

diffuse irradiance. The selected models are able to predict 

clear-sky irradiance quantities with reasonable accuracy 

[12]. These quantities are combined to obtain a modeled 

value for POA irradiance under clear sky conditions.  

The POA measurements are compared to the 

modeled values to select data that are within 100 W/m2 of 

the corresponding modeled values. Clear sky 

measurements comprise approximately 50% of the data 

for each module. Fig. 2 illustrates the POA data and the 

data that is within 100 W/m2 of the POA irradiance under 

clear sky conditions from the Solar Frontier module. This 

figure includes all POA monitored data, plotted as a 

function of solar time.  

Using the clear-sky data, Eb and Ediff in Eq. 1 are then 

estimated from the measured POA irradiance data. When 

a two-axis tracker is available, Eb can be computed 

directly from DNI measured using a pyrheliometer. 

Using the measured POA irradiance under these 

identified clear sky conditions, Eb and Ediff were 

estimated as 85% and 15% of the measured POA value, 

respectively. Many clear sky models (e.g., [13]) assume 

similar proportions for beam and sky diffuse irradiance 

under clear sky conditions and the contribution to Ediff 

from ground reflections can be assumed to be negligible. 

Estimates for fd and the f2(AOI) function are set based 

on measured values for other, similar modules. Since 

only flat plate modules are considered, we set fd = 1 

which is typical for modules that have a high 

transmission of light through the front surface. The 

influence of AOI was estimated using f2(AOI) defined by 

[14] using an angular loss coefficient of 0.17.  

 

 
Figure 2: Clear sky filter on POA used to estimate 

parameters in Eq. 1. 

 

ISC0 and f1(AMa) can then be estimated by 

substituting Eq. 1 into Eq. 2, and performing a regression 

between ISC/(Eb×f2(AOI)+fd×Ediff)(1+αISC(TC-T0)) and 

AMa. A quadratic in AMa is first fit to the data where 1 < 

AM < 2 and the value of ISC0 is taken to be the value of 

the fitted quadratic at AMa = 1.5 because, by convention, 

f1(AMa = 1.5)=1. With ISC0 in hand, f1(AMa) is estimated 

by regressing ISC/ISC0(Eb×f2(AOI)+fd×Ediff)(1+αISC(TC-

T0)) onto AMa using all data during clear sky conditions. 

Fig. 3 shows the computed values of f1(AMa) and the 

values used for the regression for the Kyocera poly-Si 

module data. In the figure, each data point is colored 

according to the solar time of the measurement, which 

illustrates that ISC is higher in the early morning due to 

red-shifted solar spectrum. The other 4 modules show 

similar patterns. These patterns are also observed in data 

measured at Sandia National Laboratories in 

Albuquerque, NM, USA, using a two-axis tracker, 

indicating that the method presented here for isolating 

spectrum effects in the fixed-tilt data is yielding 

reasonable results. However, we note that the dispersion 

in Fig. 2 is roughly twice that observed in data measured 

using a two-axis tracker. The greater dispersion likely 

results from the use of modeled rather than measured 

direct and diffuse irradiance. The f1(AMa) air mass 

modifier is used in both the SAPM (f1(AMa) in Eq. 1) and 

CEC model (M/M0 in Eq. 7). 

 

 
Figure 3: Empirical function representing effect of 

spectral content on ISC for the Kyocera poly-Si module. 

Each point on the graph is colored according to the solar 

time of the measurement. 

 

The SAPM and CEC model calibrations also use the 

same method to estimate the diode factor n. The diode 

factor is estimated from the relationship between VOC and 

Ee in Eq. 3 of the SAPM, which can be shown to be 

approximately the same as Eq. 6 in the CEC model 

evaluated at open-circuit conditions. The diode factor n 

can therefore be estimated by linear regression between 

VOC-βVOC×(TC-T0) and NS×(TC)×ln(Ee). For the SAPM, 

VOC0 is estimated from the intercept of this line. An 

example fit is shown in Fig. 4. 

At this point, there are 6 parameters left to estimate in 

the SAPM: IMP0, VMP0, C0, C1, C2, and C3. These 

parameters can be estimated by rearranging Eq. 4 and 5 

and fitting a quadratic model to each using regression 

techniques.  

 

 
Figure 4: Regression model for the diode factor, n, for 

the Sunpower mono-Si module. 

 

For the CEC model, we set the airmass modifier 

M/M0 equal to f1(AMa) as estimated for the SAPM and 

estimate the diode factor n in the same manner as for 

SAPM. There remain five parameters yet to estimate: IL0, 

IO0, Eg0, RSH0, and RS0. The CEC model calibration 

techniques used in this study are described in detail in 

[15] and are briefly outlined here. The remaining 

parameters are determined in a two-step estimation 



process: first, values of IL, I0, RS, and RSH are determined 

for each IV curve, then IL0, IO0, Eg0, RSH0, and RS0 are 

determined by appropriate regressions developed from 

Eq. 6 through Eq. 10.  

Calibration of the CEC model omits explicit 

accounting for reflection losses at the module’s surface as 

is done with SAPM by the term f2(AOI) in Eq. 1. We 

justify this omission by reasoning that except at very high 

angles-of-incidence the irradiance measured by a 

pyranometer fixed in the plane of the array is a 

reasonable value for the irradiance reaching a module’s 

cells.  

 

 

5 RESULTS 

 

The calibrated SAPM and CEC models for each 

module were used to predict the out-of-sample data. For 

each model, POA irradiance and module back-surface 

temperature comprise the predictor variables. We 

computed ISC, IMP, VOC, and VMP using the SAPM and 

CEC calibrated models and compared the predictions 

with the measured values. 

Figure 5 shows cumulative distribution functions 

(CDFs) for the absolute value of the difference between 

the predicted and measured PMP values, expressed as a 

percentage of measured PMP. Except for the tandem a-Si 

module predicted with the CEC model, PMP prediction 

error is well below 10% for 90% of the data. For the 

SAPM, this level of prediction accuracy is comparable to, 

although somewhat less than, what is observed for 

module performance models calibrated using data 

obtained using a two-axis tracker [4, 5]. For the CEC 

model, prediction errors here are comparable to what is 

observed for data measured indoors on a flash tester [5]. 

The greater prediction errors for the CEC model applied 

to the tandem a-Si module are not surprising, given that 

this module is effectively a two-junction device, whereas 

the CEC model represents the module as a single diode 

equivalent circuit. 

 

 
 

 
Figure 5: PMP prediction error CDF for each module 

using the SAPM (top) and the CEC model (bottom). 

 

Figure 6 plots the difference between predicted and 

measured PMP over the range of POA irradiance. The 

scatterplots show that prediction error appears generally 

random at any particular POA irradiance level, and the 

range of prediction error at any particular POA irradiance 

level is roughly proportional to the POA irradiance. 

Slight biases are evident, toward overprediction of power 

for SAPM and underprediction for the CEC model, for 

this module. 

 
 

Figure 6: Prediction – Measured PMP plotted with respect 

to POA using the SAPM (top) and CEC model (bottom) 

for the Kyocera poly-Si (235W) module. 

 

 

6 CONCLUSIONS 

 

In this paper, we have demonstrated that monitored 

system data can be used to calibrate reasonably accurate 

models for predicting output from PV modules. For a 

variety of module technologies and for both the SAPM 

and CEC models, prediction error for PMP is generally 

within 10% of measured power over a wide range of 

conditions when the models are calibrated using 

monitored system data. These prediction errors are 

roughly twice as great as the prediction errors for models 

calibrated for data obtained outdoors using a two-axis 

tracker, or indoors using a solar simulator. 

The calibration methods presented here use 

temperature coefficients from module data sheets rather 

than measured values. We believe that model prediction 

errors can be reduced substantially to be comparable to 

those from models calibrated using two-axis tracker or 

solar simulator data, if measured temperature coefficients 

are used rather than assuming datasheet values, and the 

techniques for accounting for solar spectrum effects are 

improved. 
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